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Abstract :  A method, essentially based on a suitable superposition of the basic solutions for the water wave potentials along with the 

application of the inverse Fourier sine transform technique, is used here to find the solution for the three-dimensional problem of 

incoming waves at the interface of a two layered liquid media. Assuming linear theory, analytical expressions for the velocity potentials 

are obtained here by ignoring the effect of interfacial tension at the interface of the liquids and also by considering the effect. Various 

results are recovered as special cases and compared with the known results. 
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I. INTRODUCTION 
Problem of water waves on a beach which slopes at an angle π/2n with the horizontal, n being any integer, is an important oceanic 

phenomenon. This problem has attracted the attention of many researchers for a long time. For n=1, i.e. when a vertical wall exists on one side 

of the ocean, a sloping beach problem reduces to the problem involving a vertical cliff. One such problem is the problem of incoming surface 

water waves against a vertical cliff. Neglecting the effect of surface tension at the free surface, the solutions of the corresponding two-

dimensional as well as three-dimensional problems, were obtained by Stoker [1], [2], long back, for deep water case. He used a powerful, 

though, complicated method essentially based on the theory of analytic functions of complex variables to solve the problems. The effect of 

surface tension at the free surface for the two-dimensional vertical cliff problem has been studied by Packham [3]. The analysis of Packham 

[3] is essentially based on a reduction procedure along with the application of the Fourier sine transform technique (cf. [4]). Since then, few 

attempts have been made to study this class of water wave problems and few of its generalization by employing different mathematical 

techniques (cf. [5]- [12]). Although problem of incoming waves progressing towards a single liquid, have been considered by several 

investigators in the past and recent years, however, the problem of waves at the interface of two superposed liquids in presence of a vertical 

cliff is rather limited. To the authors' knowledge the first problem along this direction has been considered by Kundu [13], wherein a method 

essentially based on a simple reduction procedure was employed to find the solution of the problem. 

 

Present study is concerned with the three-dimensional problem of incoming waves, at the interface of two liquids, progressing towards a 

vertical cliff of infinite length. In this analysis, no reflection of waves by the cliff is assumed. Generally, the cliff bound wave carries certain 

energy with it and is totally reflected back, if there is no mechanism to absorb (or dissipate) the incoming energy in an inviscid fluid system 

(cf. [6]) with a rigid cliff. For the present investigation, the assumption of no reflection of waves by the cliff can be justified by introducing a 

source/sink type behavior in the potential functions at the origin, i.e., where the interface of two liquids meet the cliff, which requires 

logarithmic singularity in the potential functions at the origin (cf. [14]). However, in the presence of surface tension, this requirement of 

logarithmic singularity of the potential functions at the origin is not necessary, since the wave amplitude remains finite there (cf. [3]). 

 

In this paper we have considered the three-dimensional problem of incoming waves at the surface of separation of two immiscible liquids 

against a rigid vertical cliff, where the lower liquid extends infinitely downwards and the upper liquid extends infinitely upwards. A method 

essentially based on a suitable superposition of the basic solutions for the water wave potentials (cf. [15]) and the inverse Fourier sine 

transform technique (cf. [4]) is used to find the solution of the problem under consideration. The solution is also obtained here by assuming the 

effect of interfacial tension at the interface of the liquids. Various results are recovered as special cases of the general problem considered here 

and identified with the known results. 

 

II.  FORMULATION AND SOLUTION OF THE PROBLEM 

Consider the three-dimensional irrotational motion of two inviscid, immiscible, homogeneous liquid of densities ρ1 and ρ2 (< ρ1), for the 

lower and upper liquid, respectively. Cartesian co-ordinate system is chosen in which the y-axis is taken to be vertically downwards into the 

lower liquid, so that the plane y=0, x>0 is the undisturbed interface, and the cliff is given by x=0, -∞<y<∞. Lower and upper liquid occupies 

the regions x>0, y>0, - ∞<z<∞ and x>0, y<0, -∞<z<∞ respectively. The origin is taken at the point on the line of intersection where the mean 

interface and the cliff meets.  

Since the motion is assumed to be irrotational, there exist velocity potentials Φi (x,y,z,t), ( i=1, 2; i=1 is used for the lower liquid, while i=2 

is used for the upper liquid throughout the paper), which represent progressive waves moving towards the shore line (i.e. the z-axis), such that 

the wave crests at a large distance from the shore tend to straight lines which make an arbitrary angle α with the shore line.  

Thus for periodic motion, we can assume 

                        

        Φ1(𝑥, 𝑦, 𝑧, 𝑡) = 𝑅𝑒[ 𝜙1(𝑥, 𝑦)𝑒𝑥𝑝{−𝑖(𝜎𝑡 + 𝜈𝑧)}]

         Φ2(𝑥, 𝑦, 𝑧, 𝑡) = 𝑅𝑒[ 𝜙2(𝑥, 𝑦)𝑒𝑥𝑝{−𝑖(𝜎𝑡 + 𝜈𝑧)}]
  }                                                                                  (2.1) 

 

where 𝜈 = 𝐿 sin 𝛼, L is defined, later on, by (2.8), and 𝜎 is the circular frequency. 

Assuming linear theory, the potential functions  𝜙1(𝑥, 𝑦)and  𝜙2(𝑥, 𝑦) satisfy:  

(i) Two-dimensional modified Helmholtz's equations : 
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        (∇2 − ν2)𝜙1 = 0

         (∇2 − ν2)𝜙2 = 0
   }  in the respective region of liquid                                                                              (2.2) 

 

where ∇2 is the two dimensional Laplacian. 

(ii) Linearized form of the interface conditions : 

 
        𝜙1𝑦 = 𝜙2𝑦

         𝐾𝜙1 + 𝜙1𝑦 = 𝑠 (  𝐾𝜙2 + 𝜙2𝑦)
   }  on 𝑦 = 0, 𝑥 > 0                                                                                  (2.3) 

 

where K = σ2/𝑔, the wave number, g being the acceleration due to gravity and   𝑠 = 𝜌2/𝜌1. 

(iii) The condition of vanishing of the normal component of velocity at the vertical cliff: 

 
        𝜙1𝑥 = 0,    𝑓𝑜𝑟 𝑦 > 0

        
 

          𝜙2𝑥 = 0,    𝑓𝑜𝑟 𝑦 < 0  
}   on 𝑥 = 0.                                                                                                           (2.4) 

 

(iv) The condition of no motion at infinite depth and height : 

 
        ∇𝜙1 → 0      𝑎𝑠 𝑦 → ∞

        
 

            ∇𝜙2 → 0      𝑎𝑠 𝑦 → −∞  
}                                                                                                                       (2.5) 

 

Finally, no reflection of waves by the cliff is assumed. Thus in the absence of surface tension, a source/sink type behavior of the potential 

functions at the shore line is necessary, so that the wave amplitude becomes infinite at the origin and as such (cf. [14])  

  

             𝜙1, 𝜙2 ~ ln 𝑟     𝑎𝑠 𝑟 = (𝑥
2+𝑦2)1/2 → 0.                                                                                                 (2.6) 

 

Our aim is to obtain 𝜙1(𝑥, 𝑦) and  𝜙2(𝑥, 𝑦) satisfying (2.2) - (2.5), together with the condition that they behave at infinity like progressive 

waves moving towards the cliff, so that following conditions (2.3) and (2.5), we have 

 
        𝜙1~ exp (−𝐿𝑦 − 𝑖𝜇𝑥)

        
 

            𝜙2~ − exp (𝐿𝑦 − 𝑖𝜇𝑥)   
}    𝑎𝑠 𝑥 → ∞,                                                                                                    (2.7) 

 

where  𝜋 = 𝐿 𝑐𝑜𝑠𝛼  and 𝐿 =
1+𝑠

1−𝑠
 𝐾. 

 

In view of (2.7), 𝜙1, 𝜙2 can be represented by superposing the basic solutions exp(−𝐿𝑦 − 𝑖𝜇𝑥) , (𝑘𝑐𝑜𝑠 𝑘𝑦 − 𝐿 𝑠𝑖𝑛 𝑘𝑦) 
exp (−𝑘1𝑥) and  −exp(𝐿𝑦 − 𝑖𝜇𝑥) , (𝑘𝑐𝑜𝑠 𝑘𝑦 + 𝐿 𝑠𝑖𝑛 𝑘𝑦)exp (−𝑘1𝑥) respectively (cf. [15]) where𝑘1 = (𝑘2 + 𝜐2)1/2, so that we can assume  

        𝜙1(𝑥, 𝑦) = exp(−𝐿𝑦 − 𝑖𝜇𝑥) + ∫ 𝐴(𝑘)(𝑘𝑐𝑜𝑠 𝑘𝑦 − 𝐿 𝑠𝑖𝑛 𝑘𝑦) exp(−𝑘1𝑥) 𝑑𝑘

∞

0         

 

        𝜙2(𝑥, 𝑦) = exp(𝐿𝑦 − 𝑖𝜇𝑥) −  ∫ 𝐵(𝑘)(𝑘𝑐𝑜𝑠 𝑘𝑦 + 𝐿 𝑠𝑖𝑛 𝑘𝑦) exp(−𝑘1𝑥) 𝑑𝑘

∞

0 }
  
 

  
 

    𝑥 > 0,         (2.9) 

 

where A(k), B(k) are to be determined. 

 

Exploiting the condition (2.4) into (2.9), we find that 

 

       ∫ 𝑘1𝐴(𝑘)(𝑘𝑐𝑜𝑠 𝑘𝑦 − 𝐿 𝑠𝑖𝑛 𝑘𝑦)𝑑𝑘 = −𝑖𝜇 exp(−𝐿𝑦) , 𝑦 > 0

∞

0         

 

     ∫ 𝑘1𝐵(𝑘)(𝑘𝑐𝑜𝑠 𝑘𝑦 + 𝐿 𝑠𝑖𝑛 𝑘𝑦)𝑑𝑘 = −𝑖𝜇 exp(−𝐿𝑦) , 𝑦 < 0

∞

0 }
  
 

  
 

                                                 (2.10) 

 

It can be easily shown that the two integral equations, given by (2.10), can be reduced to the ordinary differential equations 

 

      (
𝑑

𝑑𝑦
− 𝐿) 𝑓1(𝑦) = −𝑖𝜇 exp(−𝐿𝑦) , 𝑦 > 0

        
 

      (
𝑑

𝑑𝑦
+ 𝐿) 𝑓2(𝑦) = −𝑖𝜇 exp(𝐿𝑦) ,             𝑦 < 0

}
 
 

 
 

                                                                                           (2.11) 

 

where  
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       𝑓1(𝑦) = ∫ 𝑘1𝐴(𝑘) sin 𝑘𝑦 𝑑𝑘, 𝑦 > 0

∞

0         

 

           𝑓2(𝑦) = ∫ 𝑘1𝐵(𝑘) sin 𝑘𝑦 𝑑𝑘, 𝑦 < 0.

∞

0 }
  
 

  
 

                                                                                                   (2.12) 

 

Bounded solutions of the ordinary differential equations given by (2.11) are 

 

       𝑓1(𝑦) =
𝑖 𝑐𝑜𝑠𝛼

2
𝑒𝑥𝑝(−𝐿𝑦)

        
 

        𝑓2(𝑦) = −
𝑖 𝑐𝑜𝑠𝛼

2
𝑒𝑥𝑝(𝐿𝑦).}

 

 

                                                                                                                               (2.13) 

 

Using these solutions in (2.12) and invoking inverse Fourier sine transform (cf. [4]), the solutions of the integral equations given by (2.10) 

are obtained as 

 

𝐴(𝑘) = 𝐵(𝑘) =
𝑖𝑘 𝑐𝑜𝑠𝛼

𝜋𝑘1(𝑘
2 + 𝐿2)

   

 

so that from (2.9) we find 

 

        𝜙1(𝑥, 𝑦) = exp(−𝐿𝑦 − 𝑖𝜇𝑥) +
𝑖 𝑐𝑜𝑠𝛼

𝜋
∫
𝑘(𝑘𝑐𝑜𝑠 𝑘𝑦 − 𝐿 𝑠𝑖𝑛 𝑘𝑦)

𝑘1(𝑘
2 + 𝐿2)

exp(−𝑘1𝑥) 𝑑𝑘

∞

0        

 

       𝜙2(𝑥, 𝑦) = −exp(𝐿𝑦 − 𝑖𝜇𝑥) − 
𝑖 𝑐𝑜𝑠𝛼

𝜋
∫
𝑘(𝑘𝑐𝑜𝑠 𝑘𝑦 + 𝐿 𝑠𝑖𝑛 𝑘𝑦)

𝑘1(𝑘
2 + 𝐿2)

exp(−𝑘1𝑥) 𝑑𝑘.

∞

0 }
  
 

  
 

                                (2.14) 

 

It is to be noted here that the integrals in (2.14) have a logarithmic singularity at the origin (cf. [14]) and 𝜙1, 𝜙2 satisfy the conditions (2.3) 

to (2.7). Thus, the required velocity potentials can be found from (2.1), which are given by 

 

 

            Φ1(𝑥, 𝑦, 𝑧, 𝑡) = exp(−𝐿𝑦) cos(𝜇𝑥 + 𝜎𝑡 + 𝜈𝑧) +
 𝑐𝑜𝑠𝛼

𝜋
sin(𝜎𝑡 + 𝜈𝑧)

                               × ∫
𝑘(𝑘𝑐𝑜𝑠 𝑘𝑦 − 𝐿 𝑠𝑖𝑛 𝑘𝑦)

𝑘1(𝑘
2 + 𝐿2)

exp(−𝑘1𝑥) 𝑑𝑘

∞

0         

 

            Φ2(𝑥, 𝑦, 𝑧, 𝑡) = −exp(𝐿𝑦) cos(𝜇𝑥 + 𝜎𝑡 + 𝜈𝑧) −
 𝑐𝑜𝑠𝛼

𝜋
sin(𝜎𝑡 + 𝜈𝑧)

                                   × ∫
𝑘(𝑘𝑐𝑜𝑠 𝑘𝑦 + 𝐿 𝑠𝑖𝑛 𝑘𝑦)

𝑘1(𝑘
2 + 𝐿2)

exp(−𝑘1𝑥) 𝑑𝑘

∞

0 }
 
 
 
 
 

 
 
 
 
 

                                                                  (2.15)                 

 

It is interesting to note here that the solution for the corresponding two-dimensional problem can be deduced, directly, by the substitution 

of 𝛼 = 0 in (2.15). 

If the density of the upper liquid 𝜌2  be made equal to zero (then 𝑠 = 0), so that 𝐿 = 𝐾 in the expression for Φ1 (the velocity potential for 

the lower liquid), given by (2.15), the solution for the corresponding three-dimensional problem in a liquid can be obtained as 

 

  Φ1(𝑥, 𝑦, 𝑧, 𝑡) = exp(−𝐾𝑦) cos(𝜇𝑥 + 𝜎𝑡 + 𝜈𝑧) +
 𝑐𝑜𝑠𝛼

𝜋
sin(𝜎𝑡 + 𝜈𝑧)

                                                                     × ∫
𝑘(𝑘 𝑐𝑜𝑠 𝑘𝑦 − 𝐾 𝑠𝑖𝑛 𝑘𝑦)

𝑘1(𝑘
2 + 𝐾2)

exp(−𝑘1𝑥) 𝑑𝑘

∞

0

.                                     (2.16)    

        

 

The solution for the corresponding two-dimensional problem in a single liquid can be deduced, directly, from the above expression by the 

substitution of  𝛼 = 0, which is given by 

 

Φ1(𝑥, 𝑦, 𝑡) = exp(−𝐾𝑦) cos(𝐾𝑥 + 𝜎𝑡) +
 sin𝜎𝑡 

𝜋
∫
(𝑘𝑐𝑜𝑠 𝑘𝑦 − 𝐾 𝑠𝑖𝑛 𝑘𝑦)

(𝑘2 + 𝐾2)
exp(−𝑘𝑥) 𝑑𝑘

∞

0

.                         (2.17) 

The results given by (2.16) and (2.17) were obtained by Stoker [1], [2], long back, using a different mathematical technique, for a single 

liquid. 
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III.  EFFECT OF INTERFACIAL TENSION 

If the effect of interfacial tension is considered, the problem already described in section 2 can be reformulated as: 

find the solution in the form 

 

        Φ1(𝑥, 𝑦, 𝑧, 𝑡) = 𝑅𝑒[𝜑1(𝑥, 𝑦)𝑒𝑥𝑝{−𝑖(𝜎𝑡 + 𝜈0𝑧)}]

         Φ2(𝑥, 𝑦, 𝑧, 𝑡) = 𝑅𝑒[𝜑2(𝑥, 𝑦)𝑒𝑥𝑝{−𝑖(𝜎𝑡 + 𝜈0𝑧)}]
   }                                                                                        (3.1) 

 

where 𝜈0 = 𝐿0 sin 𝛼,   𝐿0 is defined, later on, by (3.6). 

 

In this case  𝜙1(𝑥, 𝑦),  𝜙2(𝑥, 𝑦) must satisfy: 

 

        (∇2 − 𝜈0
2)𝜙1 = 0

         (∇2 − 𝜈0
2)𝜙2 = 0

   }                               in the respective domain of liquid.                                                    (3.2) 

 

 

The linearized interface conditions: 

 

        𝜙1𝑦 = 𝜙2𝑦

         𝐾𝜙1 + 𝜙1𝑦 − 𝑠 (  𝐾𝜙2 + 𝜙2𝑦) + 𝑀 {
𝜙1𝑦𝑦𝑦
𝜙2𝑦𝑦𝑦 

= 0
  }  on 𝑦 = 0, 𝑥 > 0 ,                                                          (3.3) 

 

where 𝑀 =
𝑇

𝜌1𝑔
, 𝑇 being the co-efficient of interfacial tension, together with the conditions given by (2.4) and (2.5). 

Since in the presence of surface tension, the wave amplitude remains finite at the origin (cf.[3]), instead of (2.6), in this case we have 

 

                                          𝜙1, 𝜙2  remains finite as 𝑟 → 0,                                                                                         (3.4) 

             

as long as the interfacial tension effect T > 0. 

As  𝜙1(𝑥, 𝑦),  𝜙2(𝑥, 𝑦) behave like incoming progressive waves at infinity, we must have 

 
        𝜙1~ exp (−𝐿0𝑦 − 𝑖𝜇0𝑥)

        
 

            𝜙2~ − exp (𝐿0𝑦 − 𝑖𝜇0𝑥)   
}    𝑎𝑠 𝑥 → ∞,                                                                                                         (3.5) 

 

where 𝜇0 = 𝐿0 𝑐𝑜𝑠 𝛼 and 𝐿0 is the unique real positive root of the cubic equation 

 

             𝑘(1 + 𝑀 ˊ𝑘2) − 𝐿 = 0,                                                                                                                                      (3.6) 

 

with  𝑀 ˊ =
𝑀

1−𝑠
 .  

The equation (3.6) has also a pair of complex conjugate roots, say 𝜔1, 𝜔2, whose real part is negative (cf. [16]).  

       In view of (3.5), we find that for 𝑥 > 0,  𝜙1(𝑥, 𝑦),  𝜙2(𝑥, 𝑦) can be expressed as a superposition of the basic solutions 

exp(−𝐿0𝑦 − 𝑖𝜇0𝑥) , {𝑘(1 − 𝑀
 ˊ𝑘2) cos 𝑘𝑦 − 𝐿 𝑠𝑖𝑛 𝑘𝑦}exp (−𝑘2𝑥) and −exp(𝐿0𝑦 − 𝑖𝜇0𝑥) , −{𝑘(1 −𝑀

 ˊ𝑘2) cos 𝑘𝑦 +

𝐿 𝑠𝑖𝑛 𝑘𝑦} exp(−𝑘2𝑥) respectively (cf. [15]) where𝑘2 = (𝑘
2 + 𝜐0

2)1/2, so that for x > 0 

 

        𝜙1(𝑥, 𝑦) = exp(−𝐿0𝑦 − 𝑖𝜇0𝑥) + ∫ 𝐶(𝑘){𝑘(1 − 𝑀 ˊ𝑘2) cos 𝑘𝑦 − 𝐿 𝑠𝑖𝑛 𝑘𝑦} exp(−𝑘2𝑥) 𝑑𝑘

∞

0         

 

         𝜙2(𝑥, 𝑦) = −exp(𝐿0𝑦 − 𝑖𝜇0𝑥) − ∫ 𝐷(𝑘){𝑘(1 −𝑀 ˊ𝑘2) cos 𝑘𝑦 + 𝐿 𝑠𝑖𝑛 𝑘𝑦} exp(−𝑘2𝑥) 𝑑𝑘

∞

0 }
  
 

  
 

         (3.7) 

where  𝐶(𝑘) and  𝐷(𝑘) are unknowns. 

Using the condition (2.4) into (3.7), we find that 

 

       ∫ 𝑘2𝐶(𝑘){𝑘(1 − 𝑀
 ˊ𝑘2) cos 𝑘𝑦 − 𝐿 𝑠𝑖𝑛 𝑘𝑦}𝑑𝑘 = −𝑖𝜇0 exp(−𝐿0𝑦) , 𝑦 > 0

∞

0         

 

         ∫ 𝑘2𝐷(𝑘){𝑘(1 − 𝑀
 ˊ𝑘2) cos 𝑘𝑦 + 𝐿 𝑠𝑖𝑛 𝑘𝑦}𝑑𝑘 = −𝑖𝜇0 exp(𝐿0𝑦) , 𝑦 < 0

∞

0 }
  
 

  
 

                                  (3.8) 

 

The above integral equations can be reduced to the ordinary differential equations given by 
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      (𝑀 ˊ
𝑑3

𝑑𝑦3
+
𝑑

𝑑𝑦
− 𝐿)𝑔1(𝑦) = −𝑖𝜇0 exp(−𝐿0𝑦) , 𝑦 > 0

        
 

   (𝑀 ˊ
𝑑3

𝑑𝑦3
+
𝑑

𝑑𝑦
+ 𝐿)𝑔2(𝑦) = −𝑖𝜇0 exp(𝐿0𝑦) , 𝑦 < 0

}
 
 

 
 

                                                                        (3.9) 

where 

 

       𝑔1(𝑦) = ∫ 𝑘2𝐶(𝑘) sin 𝑘𝑦 𝑑𝑘, 𝑦 > 0

∞

0         

 

          𝑔2(𝑦) = ∫ 𝑘2𝐷(𝑘) sin 𝑘𝑦 𝑑𝑘, 𝑦 < 0.

∞

0 }
  
 

  
 

                                                                                                       (3.10) 

 

Bounded solutions of the ordinary differential equations (3.9) are given by 

 

        𝑔1(𝑦) =
𝑖 𝜇0
2𝐿

{exp(−𝐿0𝑦) + 𝐴1 exp(𝜔1𝑦) + 𝐵1 exp(𝜔2𝑦)}
        

 

                𝑔2(𝑦) = −
𝑖 𝜇0
2𝐿

{exp(𝐿0𝑦) + 𝐴2 exp(−𝜔1𝑦) + 𝐵2 exp(−𝜔2𝑦)}}
 

 

                                                         (3.11) 

 

where 𝐴1, 𝐵1, 𝐴2, 𝐵2 are arbitrary constants. 

Utilizing these solutions in (3.10) and exploiting inverse Fourier sine transform technique (cf.[4]), we find the solutions of the integral 

equations (3.8) as 

 

𝐶(𝑘) =
𝑖 𝜇0𝑘

𝜋𝐿𝑘2
[

1

𝑘2 + 𝐿0
2 +

𝐴1

𝑘2 + 𝜔1
2 +

𝐵1

𝑘2 + 𝜔2
2] , 𝐷(𝑘) =

𝑖 𝜇0𝑘

𝜋𝐿𝑘2
[

1

𝑘2 + 𝐿0
2 +

𝐴2

𝑘2 + 𝜔1
2 +

𝐵2

𝑘2 + 𝜔2
2].  

 

Since 𝐿0, 𝜔1, 𝜔2  are the roots of the cubic equation (3.6), it can be easily be shown that 

 

                        𝑀 ˊ2(𝑘2 + 𝐿0
2)(𝑘2 + 𝜔1

2)(𝑘2 + 𝜔2
2) = 𝑘2(1 − 𝑀 ˊ𝑘2)

2
+ 𝐿2, 

 

so that the above expressions for 𝐶(𝑘)and 𝐷(𝑘) reduce to the form 

 

     𝐶(𝑘) =
𝑖 𝜇0𝑘𝑀

 ˊ2(𝐶1𝑘
4 + 𝐷1𝑘

2 + 𝐸1)

𝜋𝐿𝑘2{𝑘
2(1 − 𝑀 ˊ𝑘2)2 + 𝐿2}
        

 

     𝐷(𝑘) =
𝑖 𝜇0𝑘𝑀

 ˊ2(𝐶2𝑘
4 + 𝐷2𝑘

2 + 𝐸2)

𝜋𝐿𝑘2{𝑘
2(1 − 𝑀 ˊ𝑘2)2 + 𝐿2} }

 
 

 
 

                                                                                                               (3.12) 

where 

 
 𝐶𝑗 = 1 + 𝐴𝑗 + 𝐵𝑗  

                                                   𝐷𝑗 = 𝜔1
2 + 𝜔2

2 + 𝐴𝑗(𝐿0
2 +𝜔2

2) + 𝐵𝑗(𝐿0
2 + 𝜔1

2)

                             𝐸𝑗 = 𝜔1
2𝜔2

2 + 𝐿0
2(𝐴𝑗𝜔2

2 + 𝐵𝑗𝜔1
2).

}      (𝑗 = 1,2)                                               (3.13) 

 

To satisfy the boundedness condition of 𝜙1(𝑥, 𝑦) and 𝜙2(𝑥, 𝑦) at the origin, we must have 𝐶𝑗 = 0, 𝐷𝑗 = 0 (𝑗 = 1,2). Thus, after some 

elementary manipulation we obtain 

 

𝐴𝑗 =
2(

1

𝑀 ˊ + 𝐿0
2) + 𝜔1

2

𝜔2
2 − 𝜔1

2 , 𝐵𝑗 = −
2(

1

𝑀 ˊ
+ 𝐿0

2) + 𝜔2
2

𝜔2
2 − 𝜔1

2 . 

 

Therefore from (3.13) we obtain 

𝐸𝑗 =
𝐿(1 + 3𝑀 ˊ𝐿0

2)

𝑀 ˊ2𝐿0
, 

 

so that, from (3.12) we obtain finally 

 

𝐶(𝑘) = 𝐷(𝑘) =
𝑖𝑘(1 + 3𝑀 ˊ𝐿0

2) cos 𝛼

𝜋𝑘2{𝑘
2(1 − 𝑀 ˊ𝑘2)2 + 𝐿2}

  . 

 

Thus from (3.7), the potential functions 𝜙1(𝑥, 𝑦) and  𝜙2(𝑥, 𝑦) satisfying (3.3), (2.4), (2.5) and (3.5) are given by 
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    𝜙1(𝑥, 𝑦) = exp(−𝐿0𝑦 − 𝑖𝜇0𝑥) +
𝑖(1 + 3𝑀 ˊ𝐿0

2) cos 𝛼

𝜋
        

                                                             × ∫
𝑘{𝑘(1 −𝑀 ˊ𝑘2) cos 𝑘𝑦 − 𝐿 𝑠𝑖𝑛 𝑘𝑦}

𝑘2{𝑘
2(1 − 𝑀 ˊ𝑘2)2 + 𝐿2}

exp(−𝑘2𝑥) 𝑑𝑘

∞

0

     𝜙2(𝑥, 𝑦) = −exp(𝐿0𝑦 − 𝑖𝜇0𝑥) −
𝑖(1 + 3𝑀 ˊ𝐿0

2) cos 𝛼

𝜋

                                                            × ∫
𝑘{𝑘(1 − 𝑀 ˊ𝑘2) cos 𝑘𝑦 + 𝐿 𝑠𝑖𝑛 𝑘𝑦}

𝑘2{𝑘
2(1 − 𝑀 ˊ𝑘2)2 + 𝐿2}

exp(−𝑘2𝑥) 𝑑𝑘.

∞

0 }
 
 
 
 
 

 
 
 
 
 

                         (3.14) 

 

We may note here that so long as  𝑇 > 0,   𝜙1, 𝜙2  remain finite as 𝑟 → 0 (cf. [3]). Hence the explicit form of the velocity potentials 

become 

  Φ1(𝑥, 𝑦, 𝑧, 𝑡) = exp(−𝐿0𝑦) cos(𝜇0𝑥 + 𝜎𝑡 + 𝜈0𝑧) +
(1 + 3𝑀 ˊ𝐿0

2) cos 𝛼

𝜋
sin(𝜎𝑡 + 𝜈0𝑧)

                               × ∫
𝑘{𝑘(1 − 𝑀 ˊ𝑘2) cos 𝑘𝑦 − 𝐿 𝑠𝑖𝑛 𝑘𝑦}

𝑘2{𝑘
2(1 − 𝑀 ˊ𝑘2)2 + 𝐿2}

exp(−𝑘2𝑥) 𝑑𝑘

∞

0         

 

   Φ2(𝑥, 𝑦, 𝑧, 𝑡) = −exp(𝐿0𝑦) cos(𝜇0𝑥 + 𝜎𝑡 + 𝜈0𝑧) −
(1 + 3𝑀 ˊ𝐿0

2) cos 𝛼

𝜋
sin(𝜎𝑡 + 𝜈0𝑧)

                                   × ∫
𝑘{𝑘(1 − 𝑀 ˊ𝑘2) cos 𝑘𝑦 + 𝐿 𝑠𝑖𝑛 𝑘𝑦}

𝑘2{𝑘
2(1 −𝑀 ˊ𝑘2)2 + 𝐿2}

exp(−𝑘2𝑥) 𝑑𝑘

∞

0

.
}
 
 
 
 
 

 
 
 
 
 

                                        (3.15)                 

 

It may be noted here that simply by assuming 𝛼 = 0 in (3.15), the solution for the corresponding two-dimensional problem can be obtained 

(cf. [13]).Neglecting the interfacial tension effect at the interface of the two liquid (i.e. when 𝑇 = 0), 𝑀 ˊ = 0 so that 𝐿0 = 𝐿, the expressions 

for Φ1, Φ2 given by (3.15) reduce to that given by (2.15). Also in the absence of upper liquid 𝑠 = 0, so that 𝑀 ˊ = 𝑀  the expression for Φ1 

given by (3.15) reduces to the velocity potential of a three-dimensional incoming wave in a deep sea against a vertical cliff in the presence of 

surface tension at the free surface. The explicit form of the velocity potential, in that case, becomes 

 

  Φ1(𝑥, 𝑦, 𝑧, 𝑡) = exp(−𝐿0𝑦) cos(𝜇0𝑥 + 𝜎𝑡 + 𝜈0𝑧) +
(1 + 3𝑀𝐿0

2) cos 𝛼

𝜋
sin(𝜎𝑡 + 𝜈0𝑧)

                                                                   × ∫
𝑘{𝑘(1 − 𝑀𝑘2) cos 𝑘𝑦 − 𝐾𝑠𝑖𝑛 𝑘𝑦}

𝑘2{𝑘
2(1 − 𝑀𝑘2)2 + 𝐾2}

exp(−𝑘2𝑥) 𝑑𝑘

∞

0

                     (3.16)

        

 

 

which is in complete agreement with the result obtained by Mandal and Kundu [8] in connection with the corresponding problem for a single 

liquid. In addition, if we assume 𝛼 = 0 in the expression for the velocity potential given by (3.16), we obtain 

 

 

  Φ1(𝑥, 𝑦, 𝑧, 𝑡) = exp(−𝐿0𝑦) cos(𝐿0𝑥 + 𝜎𝑡) +
(1 + 3𝑀𝐿0

2)

𝜋
sin 𝜎𝑡

                                                                × ∫
𝑘{𝑘(1 − 𝑀𝑘2) cos 𝑘𝑦 − 𝐾𝑠𝑖𝑛 𝑘𝑦}

𝑘2{𝑘
2(1 − 𝑀𝑘2)2 + 𝐾2}

exp(−𝑘2𝑥) 𝑑𝑘

∞

0                                                                   
        

                           

which was derived by Packham [3] using a different approach based on a reduction procedure, in connection with the corresponding two-

dimensional problem in a single liquid. 

 

IV.  DISCUSSION 

 A relatively simple approach is described here to find the solution of three-dimensional problem of incoming waves progressing at the 

interface of two liquids against a rigid vertical cliff. Analytical expressions for the velocity potentials in each of the liquids are obtained 

assuming the lower and the upper liquid to be of infinite depth and height respectively. Using linear theory, the solution is obtained by 

exploiting a method based on a suitable superposition of the basic solutions for the water wave potential and the inverse Fourier sine transform 

technique. Reflection of waves at the shore line is not allowed, which requires logarithmic singularities in the potential functions at the cliff (in 

the absence of surface tension). It may be noted that nonlinear effects and mixing become important near the cliff due to these singularities. 

Mixing near the cliff is likely to produce an intrustive flow that blurs the interface. However, as the problem is formulated within the frame 

work of linearized theory, and as the liquids are assumed to be immiscible, these effects are not considered here. The solutions for the potential 

functions are obtained here by ignoring the effect of interfacial tension first and then by considering the effect of interfacial tension at the 

interface of two liquids. Various results are recovered as special cases of the general problem considered here. The most important feature of 

the method described in this paper is that simply by the substitution of 𝛼 (the angle of incidence) to be equal to zero, results for the 

corresponding two-dimensional problem can be recovered. 
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